Normal Form for Spatial Dynamics in the Swift-hohenberg Equation

نویسندگان

  • John Burke
  • Edgar Knobloch
چکیده

The reversible Hopf bifurcation with 1:1 resonance holds the key to the presence of spatially localized steady states in many partial differential equations on the real line. Two different techniques for computing the normal form for this bifurcation are described and applied to the Swift-Hohenberg equation with cubic/quintic and quadratic/cubic nonlinearities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grain boundaries in the Swift-Hohenberg equation

We study the existence of grain boundaries in the Swift-Hohenberg equation. The analysis relies on a spatial dynamics formulation of the existence problem and a centre-manifold reduction. In this setting, the grain boundaries are found as heteroclinic orbits of a reduced system of ODEs in normal form. We show persistence of the leading-order approximation using transversality induced by wavenum...

متن کامل

The Swift-Hohenberg equation requires non-local modifications to model spatial pattern evolution of physical problems

I argue that “good” mathematical models of spatio-temporal dynamics in two-dimensions require non-local operators in the nonlinear terms. Consequently, the often used Swift-Hohenberg equation requires modification as it is purely local. My aim here is to provoke more critical examination of the rationale for using the Swift-Hohenberg equations as a reliable model of the spatial pattern evolutio...

متن کامل

Holistically discretise the Swift-Hohenberg equation on a scale larger than its spatial pattern

I introduce an innovative methodology for deriving numerical models of systems of partial differential equations which exhibit the evolution of spatial patterns. The new approach directly produces a discretisation for the evolution of the pattern amplitude, has the rigorous support of centre manifold theory at finite grid size h, and naturally incorporates physical boundaries. The results prese...

متن کامل

Coarsening and frozen faceted structures in the supercritical complex Swift-Hohenberg equation

The supercritical complex Swift-Hohenberg equation models pattern formation in lasers, optical parametric oscillators and photorefractive oscillators. Simulations of this equation in one spatial dimension reveal that much of the observed dynamics can be understood in terms of the properties of exact solutions of phase-winding type. With real coefficients these states take the form of time-indep...

متن کامل

Interfaces between rolls in the Swift-Hohenberg equation

We study the existence of interfaces between stripe or roll solutions in the Swift-Hohenberg equation. We prove the existence of two different types of interfaces: corner-like interfaces, also referred to as knee solutions, and step-like interfaces. The analysis relies upon a spatial dynamics formulation of the existence problem and an equivariant center manifold reduction. In this setting, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007